Some thoughts on open-
source software
development ~

Jamie Collins
School of Oceanography and eScience Institute
University of Washington

james.r.collins@aya.yale.edu
W, () @jamesrco
http://jamesrco.github.io

* Presumes you intend to develop something for public consumption at

project outset, but most advice useful in retroactive scenario as well



Thanks

Members of Data Stewardship and Scientific
Software clusters at ESIP (Federation of Earth
Science Information Partners): http://esipfed.org/

eScience colleagues

WHOI Ocean Informatics Initiative, particularly
Stace Beaulieu: http://www.whoi.edu/DoR/special-
projects/ocean-informatics-working-group

Cara Manning (UBC, formerly WHOI)



Perspective

 Oceanography & the geosciences

* Mostly R (own recent experience developing
LOBSTAHS package)

* htips://github.com/vanmooylipidomics/L OBSTAHS

* http://bioconductor.org/packages/ OBSTAHS

e Some advice specific to R development, but almost
all the advice here applies to package/library
development in Python as well



Experience & motivation”



Informal survey of eScience students and postdocs *

Descriptor No. responses
Have you developed formally packaged open-source 5
software?
Contributed to a larger, ongoing open-source project? 4
If one of the above, what language?
Python 1
R 3
C 1
Are you a package or library maintainer? 2

Project genesis:
Direct outgrowth of research project? 3
Or a side project? 2

Multiple responses, including (1) desire to make
Reason for developing? performing repetitive easier, (2) desire to share tool with
broader research community

Level of training in best practices:
None/self-taught 8
Published journal articles

Classroom or other formal training 1

* Survey of those attending the eScience student & postdoc lunch on 16 January 2018 (N = 10)



At the beginning...

e Ask yourself up front:
* Will a loose collection of scripts suffice?

* Do | really need/want to develop a
package/library?

* Target audience (size and type)
iInstructive here



f a package itis...

* Again, think about audience

e Version control critical (obvious to this
audience)

e Facilitates collaboration

 Makes it easy to walk back mistakes & float
new features without breaking everything



f a package itis...

* Code hygiene will be important; don’t wait until later to
clean up your mess

 Documentation may be most time-consuming
component, so start early

« Build docs/manual pages for functions as you go

 Make them useful (don’t do the minimum only to spoof a
package checker)

e (Good documentation will make your software more
appealing and useful



As you work toward the goal

* Unit tests (make lots of them, use lots of them)
 Trial and error (on your development branch, of course)

e [he #opensource, #openaccess community is ready to
help; find a good listserv or forum and ask away

e ...but pay it forward and assist in the future when
you're the one who knows the answer

* [fin R: Run R CMD check, R CMD BiocCheck early &
often



Before first official release

* Choose the right license (depends on
objective): https://choosealicense.com/

* Patent or other [P implications”

* Use testing?



Once it’'s out there

o Support your work & be willing to fix bugs
(especially early on)

 What happens after you leave: Do you have
a software sustainability plan®

e Some repositories will sunset or mothball
your package after years of inactivity, but it
might still be useful to someone



More on sustainability

e Some resources:

* Best practices from the software Sustainability

Institute: https://www.software.ac.uk/blog/
2017-11-29-best-practices-scientific-software

* “Community recommendations” from some
ESIP colleagues: https://
openresearchsoftware.metajnl.com/articles/
10.5334/jors.bt/




Once it’'s out there

» Consider creating a companion data package containing
a validated example/demonstration dataset that you
understand
 Helps users learn your software

 Promote: A published paper helps, but so does accession
to a repository (CRAN or Bioconductor for R)

e Social media?

* Get credit: Can use Zenodo to archive and obtain DOI for
each release of your package; new solutions on horizon



Some general resources

o ESIP Software Guidelines, draft October 2016:
hitps://esipted.qgithub.io/Software-Assessment-
Guidelines/guidelines.html

* A few useful papers (credit C. Titus Brown, Stace
Beaulieu):

 http://journals.plos.org/plosbiology/article?
i[d=10.1371/journal.pbio.1002303

e https://arxiv.org/pdf/1609.00037v2.pdf




Some R resources

https://hilaryparker.com/2014/04/29/writing-an-r-package-from-
scratch/

https://cran.r-project.org/doc/manuals/r-release/R-exts.html

Bioconductor best practices (even if not submitting to Bioconductor):

e https://www.bioconductor.org/developers/how-to/

buildingPackagesForBioc/

» https://www.bioconductor.org/developers/how-to/coding-style/

Anything by Hadley Wickham, but particularly:
* http://r-pkgs.had.co.nz/man.html (guidance on documentation)



Future Initiatives

e Some activity afoot to develop a scientific
software repository/directory for the
geosciences

e NSF EarthCube, ESIP

* Incorporating formal instruction in best

practices into undegrad/early graduate level
education





