
james.r.collins@aya.yale.edu  
 , @jamesrco

http://jamesrco.github.io

Some thoughts on open-
source software
development *

Jamie Collins
School of Oceanography and eScience Institute

University of Washington

* Presumes you intend to develop something for public consumption at
project outset, but most advice useful in retroactive scenario as well

Thanks
• Members of Data Stewardship and Scientific

Software clusters at ESIP (Federation of Earth
Science Information Partners): http://esipfed.org/

• eScience colleagues

• WHOI Ocean Informatics Initiative, particularly
Stace Beaulieu: http://www.whoi.edu/DoR/special-
projects/ocean-informatics-working-group

• Cara Manning (UBC, formerly WHOI)

Perspective
• Oceanography & the geosciences

• Mostly R (own recent experience developing
LOBSTAHS package)

• https://github.com/vanmooylipidomics/LOBSTAHS

• http://bioconductor.org/packages/LOBSTAHS

• Some advice specific to R development, but almost
all the advice here applies to package/library
development in Python as well

Experience & motivation?

Informal survey of eScience students and postdocs *
Descriptor No. responses
Have you developed formally packaged open-source
software? 5

Contributed to a larger, ongoing open-source project? 4
If one of the above, what language?

Python 1
R 3
C 1

Are you a package or library maintainer? 2
Project genesis:

Direct outgrowth of research project? 3
Or a side project? 2

Reason for developing?
Multiple responses, including (1) desire to make
performing repetitive easier, (2) desire to share tool with
broader research community

Level of training in best practices:
None/self-taught 8
Published journal articles 1
Classroom or other formal training 1

* Survey of those attending the eScience student & postdoc lunch on 16 January 2018 (N = 10)

At the beginning…
• Ask yourself up front:

• Will a loose collection of scripts suffice?

• Do I really need/want to develop a
package/library?

• Target audience (size and type)
instructive here

If a package it is…
• Again, think about audience

• Version control critical (obvious to this
audience)

• Facilitates collaboration

• Makes it easy to walk back mistakes & float
new features without breaking everything

If a package it is…
• Code hygiene will be important; don’t wait until later to

clean up your mess

• Documentation may be most time-consuming
component, so start early

• Build docs/manual pages for functions as you go

• Make them useful (don’t do the minimum only to spoof a
package checker)

• Good documentation will make your software more
appealing and useful

As you work toward the goal
• Unit tests (make lots of them, use lots of them)

• Trial and error (on your development branch, of course)

• The #opensource, #openaccess community is ready to
help; find a good listserv or forum and ask away

• …but pay it forward and assist in the future when
you’re the one who knows the answer

• If in R: Run R CMD check, R CMD BiocCheck early &
often

Before first official release

• Choose the right license (depends on
objective): https://choosealicense.com/

• Patent or other IP implications?

• Use testing?

Once it’s out there
• Support your work & be willing to fix bugs

(especially early on)

• What happens after you leave: Do you have
a software sustainability plan?

• Some repositories will sunset or mothball
your package after years of inactivity, but it
might still be useful to someone

More on sustainability
• Some resources:

• Best practices from the software Sustainability
Institute: https://www.software.ac.uk/blog/
2017-11-29-best-practices-scientific-software

• “Community recommendations” from some
ESIP colleagues: https://
openresearchsoftware.metajnl.com/articles/
10.5334/jors.bt/

Once it’s out there
• Consider creating a companion data package containing

a validated example/demonstration dataset that you
understand

• Helps users learn your software

• Promote: A published paper helps, but so does accession
to a repository (CRAN or Bioconductor for R)

• Social media?

• Get credit: Can use Zenodo to archive and obtain DOI for
each release of your package; new solutions on horizon

Some general resources
• ESIP Software Guidelines, draft October 2016:

https://esipfed.github.io/Software-Assessment-
Guidelines/guidelines.html

• A few useful papers (credit C. Titus Brown, Stace
Beaulieu):

• http://journals.plos.org/plosbiology/article?
id=10.1371/journal.pbio.1002303

• https://arxiv.org/pdf/1609.00037v2.pdf

Some R resources
• https://hilaryparker.com/2014/04/29/writing-an-r-package-from-

scratch/

• https://cran.r-project.org/doc/manuals/r-release/R-exts.html

• Bioconductor best practices (even if not submitting to Bioconductor):

• https://www.bioconductor.org/developers/how-to/
buildingPackagesForBioc/

• https://www.bioconductor.org/developers/how-to/coding-style/

• Anything by Hadley Wickham, but particularly:

• http://r-pkgs.had.co.nz/man.html (guidance on documentation)

Future initiatives
• Some activity afoot to develop a scientific

software repository/directory for the
geosciences

• NSF EarthCube, ESIP

• Incorporating formal instruction in best
practices into undegrad/early graduate level
education

